From static to dynamic ensemble of classifiers selection: Application to Arabic handwritten recognition
نویسندگان
چکیده
Arabic handwriting word recognition is a challenging problem due to Arabic’s connected letter forms, consonantal diacritics and rich morphology. One way to improve the recognition rates classification task is to improve the accuracy of individual classifiers; another, is to apply ensemble of classifiers methods. To select the best classifier set from a pool of classifiers, the classifier diversity is considered one of the most important properties in static classifier selection. However, the advantage of dynamic ensemble selection versus static classifier selection is that used classifier set depends critically on the test pattern. In this paper, we propose two approaches for Arabic handwriting recognition (AHR) based on static and dynamic ensembles of classifiers selection. The first one selects statically the best set of classifiers from a pool of classifier already designed based on diversity measures. The second one represents a new algorithm based on Dynamic Ensemble of Classifiers Selection using Local Reliability measure (DECS-LR). It chooses the most confident ensemble of classifiers to label each test sample dynamically. Such a level of confidence is measured by calculating the proposed local reliability measure using confusion matrixes constructed during training level. We show experimentally that both approaches provide encouraging results with the second one leading to a better recognition rate for (AHR) system using IFN ENIT database.
منابع مشابه
From dynamic classifier selection to dynamic ensemble selection
In handwritten pattern recognition, the multiple classifier system has been shown to be useful for improving recognition rates. One of the most important tasks in optimizing a multiple classifier system is to select a group of adequate classifiers, known as an Ensemble of Classifiers (EoC), from a pool of classifiers. Static selection schemes select an EoC for all test patterns, and dynamic sel...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملOff-line Handwritten Word Recognition Using Ensemble of Classifier Selection and Features Fusion
Handwritten recognition is a very active research domain that led to several works in the literature for the Latin Writing. The current systems tendency is oriented toward the classifiers combination and the integration of multiple information sources. In this paper, we describe two approaches for Arabic handwritten recognition using optimized Multiple classifier system MCS . The first rests on...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملMulti-objective Genetic Algorithms to Create Ensemble of Classifiers
Feature selection for ensembles has shown to be an effective strategy for ensemble creation due to its ability of producing good subsets of features, which make the classifiers of the ensemble disagree on difficult cases. In this paper we present an ensemble feature selection approach based on a hierarchical multi-objective genetic algorithm. The algorithm operates in two levels. Firstly, it pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- KES Journal
دوره 16 شماره
صفحات -
تاریخ انتشار 2012